DISEGUAGLIANZE E DISEQUAZIONI

Per comprendere meglio questo argomento, leggi prima le seguenti lezioni:
 
 

Scriviamo

10 > 8

7 < 15

23 < 100.



Quelle che abbiamo scritto sono delle DISUGUAGLIANZE.



Se invece scriviamo

4 x > 8

2 y < 25

3x + 1 > 7x -4

ci troviamo di fronte a delle DISEQUAZIONI cioè a delle diseguaglianze nelle quali compare una lettera che rappresenta la nostra incognita.



Quindi possiamo definire una DISEQUAZIONE come una DISEGUAGLIANZA tra due ESPRESSIONI LETTERALI verificata solamente per particolari VALORI attributi alle lettere. Tali VALORI si dicono SOLUZIONI della disequazione.



LA LEZIONE PROSEGUE SOTTO LA PUBBLICITA'

In una disequazione, così come accade in una equazione, troviamo un PRIMO e un SECONDO MEMBRO.

Esempio:

Disequazione



Mentre nelle equazioni, a separare il primo dal secondo membro, vi è sempre il simbolo

=

nelle DISEQUAZIONI vi possono essere 4 simboli diversi

Maggiore che si legge: maggiore

Minore che si legge: minore

Maggiore o uguale che si legge: maggiore o uguale

Minore o uguale che si legge: minore o uguale

Vediamo quali differenze esistono tra questi simboli.

Se scriviamo

x Maggiore di 4

stiamo considerando tutti i valori di x superiori a 4, quindi 5, 6, 7, 8, ......



Se scriviamo

x Maggiore o uguale a 4

stiamo considerando tutti i valori di x uguali o superiore a 4, quindi 4, 5, 6, 7, 8, ......

Nel secondo caso, quindi, includiamo anche il valore 4 che invece è escluso nel primo caso.



Il discorso è del tutto analogo con i segni minore e minore o uguale.

 
Per approfondire questo argomento, leggi:
 
 
 
Il nostro sito collabora ad una ricerca condotta dall'Università dell'Aquila e dall'Università di Pavia sulla didattica della matematica. Ti saremmo grati se volessi dedicarci alcuni minuti rispondendo ad un breve questionario.

Compila il questionario


SchedeDiGeografia.net
StoriaFacile.net
EconomiAziendale.net
DirittoEconomia.net
LeMieScienze.net
MarchegianiOnLine.net