ECCENTRICITA' DELL'ELLISSE CON FUOCHI SULL'ASSE DELLE X

Per comprendere meglio questo argomento, leggi prima le seguenti lezioni:
 
 

Di seguito abbiamo disegnato tre ELLISSI tutte aventi il centro nell'origine degli assi e i FUOCHI sull'ASSE delle x e tutte aventi gli stessi fuochi:

Eccentricità dell'ellisse



Come possiamo notare le tre ellissi si differenziano per il diverso SCHIACCIAMENTO che presentano sull'ASSE MAGGIORE.

L'ellisse rossa è la più schiacciata delle tre, mentre quella meno schiacciata è ellisse marrone.

La misura dello schiacciamento dell'ellisse sul suo asse maggiore prende il nome di ECCENTRICITA' che viene indicata con una e minuscola.

L'ECCENTRICITA' è data dal RAPPORTO tra la SEMIDISTANZA FOCALE e il SEMIASSE MAGGIORE:

e = c/a.



Facciamo una prima osservazione: poiché la SEMIDISTANZA FOCALE è sempre MINORE del SEMIASSE MAGGIORE, l'ECCENTRICITA' dell'ellisse è sempre COMPRESA tra 0 ed 1.

0 < e < 1.



Eccentricità dell'ellisse

Notiamo che più il valore di a è maggiore rispetto al valore di c, minore è l'eccentricità dell'ellise che, di conseguenza, risulta meno schiacciata rispetto all'asse maggiore.

Esaminiamo ora i due casi estremi:

  • e = 1.

    Affinché l'eccentricità sia uguale all'unità è necessario che

    a = c.

    Eccentricità dell'ellisse uguale ad 1



    LA LEZIONE PROSEGUE SOTTO LA PUBBLICITA'

    In questo caso, quindi, il semiasse maggiore è uguale alla semidistanza focale. In altre parole l'asse maggiore è uguale alla distanza focale. Questo significa che l'ELLISSE degenera nel SEGMENTO che UNISCE i due FUOCHI;

  • e = 0.

    Affinché l'eccentricità sia uguale a zero è necessario che

    c = 0.

    In questo caso, quindi, la semidistanza focale è nulla, il che significa che lo è anche la distanza focale. Ciò si verifica quando i due fuochi coincidono e la nostra curva non sarebbe altro che una CIRCONFERENZA dove i due semiassi sono uguali, ovvero a = b.

    Il semiasse sarà pari al raggio.

    Quindi possiamo dire che

    PF1 + PF2 = 2r.

    Eccentricità dell'ellisse uguale ad 0


Ovviamente, essendo la relazione che lega

e = c/a

avremo che

c = a · c

a = c/ e.

Nella prossima lezione esamineremo l'eccentricità di un'ellisse con centro nell'origine degli assi e fuochi sull'asse delle y.

 
 
 
Il nostro sito collabora ad una ricerca condotta dall'Università dell'Aquila e dall'Università di Pavia sulla didattica della matematica. Ti saremmo grati se volessi dedicarci alcuni minuti rispondendo ad un breve questionario.

Compila il questionario


SchedeDiGeografia.net
StoriaFacile.net
EconomiAziendale.net
DirittoEconomia.net
LeMieScienze.net
MarchegianiOnLine.net